Mol Psychiatry | 石云课题组揭示人类攻击行为的遗传机制


       2022年6月13日,智能院石云课题组在Nature 子刊,精神病学领域旗舰学术期刊《分子精神病学》(Molecular Psychiatry)在线发表了题为《Dysfunction of AMPA receptor GluA3 is associated with aggressive behavior in human》的科研论文,发现谷氨酸受体GluA3的功能缺失突变或者抑制GluA3表达的单核苷酸多态性位点会促进人类的攻击行为,揭示了人类攻击行为新的遗传机制。

 

11.jpg

       人类不恰当的攻击行为(如暴力犯罪)损害社会和谐、破坏家庭、对他人造成伤害。然而,攻击行为的遗传基础在很大程度上仍然不清楚。人的行为范式是由脑内的神经活动决定的。在脑内,突触是神经元之间进行信号交换的结构基础。神经信号在神经元之间的交换依赖于突触中的神经递质,比如谷氨酸。突触前神经元释放的谷氨酸结合并激活突触后膜的AMPA型谷氨酸受体,介导离子的流动,改变突触后神经元的电活动,从而将神经信号从一个神经元(突触前)传递给下一个神经元(突触后)。因而AMPA受体在人类行为、认知、情感等各种神经活动中起关键作用。

在过去的研究中,研究人员发现将AMPA受体亚基GluA3的编码基因从小鼠基因组敲除,雄性小鼠会表现出强烈的攻击行为(图1)。由于这个发现,位于X染色体上编码GluA3的基因GRIA3被认为是人类攻击行为的易感基因。然而迄今为止没有直接证据表明GRIA3基因和人类的攻击行为相关。

       在本项研究中,研究人员在三个欧洲家庭发现了四位具有突发攻击行为的男性患者。他们的基因组分别携带GRIA3基因的罕见变体,造成GluA3亚基上G630R或E787G的突变。功能检测表明这两个突变都造成AMPA受体GluA3功能的散失,也就是说,谷氨酸结合到突变的GluA3上,不能介导有效的神经信号传递。因此,人类GluA3的功能损坏也会导致攻击行为,这和基因敲除小鼠的行为范式一致。

       研究人员继续提问:除了基因突变的病人,在普通人群中是否存在影响GluA3的表达水平的遗传因素,从而导致攻击行为呢?研究人员检查了GRIA3基因范围内的单核苷酸多态性位点(SNP)。在192个高频SNP中,rs3216834引起了研究人员的注意。rs3216834位点为连续的鸟苷酸重复序列,在人群中大多数人(约78%)带有9个鸟苷酸(9G),少数人带有7G、8G、10G和11G。从序列上看,rs3216834和周围的序列容易形成鸟苷酸四联体的单链DNA结构,从而阻滞了mRNA的转录。实验验证了这个猜想,并且10G和11G严重抑制GluA3的表达。研究人员继续寻找rs3216834和攻击行为的证据。前文说到,攻击行为和暴力犯罪相关。研究者进而在294位男性暴力犯罪服刑人员中发现9人携带rs3216834-10G,另有1人携带11G,占总体的3.4%。而在没有犯罪记录的937位社区男性中,仅有2人携带10G(0.2%),并且没有发现11G的携带者。因而rs3216834-10G,11G的携带者在暴力犯罪服刑人员中远高于正常对照人群,是一个攻击行为的风险因素(图1)。

       研究人员进一步利用GluA3敲除小鼠探究了GluA3功能缺失导致攻击性行为的神经环路机理,他们发现敲除鼠的内侧前额叶皮层的神经活动减低,在前额叶皮层将GluA3补偿回去,可以显著缓解敲除小鼠的攻击性行为,说明前额叶皮层异常的神经活动是攻击性行为的关键神经环路机制。

 

1655203219932428.jpg

       图1. GluA3敲除的小鼠展现强烈的攻击行为。在人类,GluA3的突变失去功能,或者SNP导致GluA3表达下降,促进攻击行为。

 

       该论文是20多位研究人员国际合作研究的成果,石云研究员是论文的第一通讯作者和总协调人。研究工作受到国家自然科学基金,科技部重大专项项目和广东省科技创新战略专项资金等基金的支持。

原文链接:https://www.nature.com/articles/s41380-022-01659-8


COPYRIGHT © 2021

广东省智能科学与技术研究院版权所有

粤ICP备2021109615号 全案策划:KCCN

公众号

公众号