李尚阳

博士后

Email:lishangyang@@gdiist.cn

 

个人简介:
2019年本科毕业于北京师范大学物理系,2024年博士毕业于北京大学前沿交叉学科研究院。研究方向为计算神经科学和机器学习,一方面关注通过计算建模的方式回答大脑信息处理原理和解析神经疾病机制;另一方面关注机器学习算法研究,重点聚焦于大模型相关技术和模型研究,结合神经医学领域特点研发神经医学大模型。发表多篇学术论文并担任神经科学领域期刊和机器学习国际会议审稿人。


本实验室长期招收机器学习相关背景全职博士后以及数学、统计、生物医学工程和计算机方向实习生,实习优秀者有全职岗位开放。


研究方向: 

计算神经科学与机器学习


代表性论文:

[1] Subgraph Federated Learning with Information Bottleneck Constrained Generative Learning (Shangyang Li, and Jiayan Guo) (ACM Transactions on Knowledge Discovery from Data, TKDD 2025)

[2] Empowering Cross-Patient Adaptive-Length Epilepsy Diagnosis with ECNorm: A Channel-wise Approach (Kaixuan Wang, Tao Lu and Shangyang Li) (CogSci 2025, 通讯作者,CCF-B)

[3] Unified Fusion Network Model for EEG Signals (Chunchang Shao and Shangyang Li) (CogSci 2025,通讯作者,CCF-B)

[4] Harnessing Pre-trained Language Models for EEG-based Epilepsy Detection (Tao Lu, Shangyang Li) (ICME 2025,共同第一作者兼通讯作者,CCF-B)

[5] Spindle oscillation emerges at the critical state of the electrically coupled network in thalamic reticular nucleus (Shangyang Li, Chaoming Wang and Si Wu) (Cell Reports 2024)

[6] BrainPy, a flexible, integrative, efficient, and extensible framework for general-purpose brain dynamics programming(Chaoming Wang, Tianqiu Zhang, Xiaoyu Chen, Sichao He, Shangyang Li and Si Wu) (eLife 2024)

[7] BrainPy: a differentiable brain simulator bridging brain simulation and brain-inspired computing (Chaoming Wang, Tianqiu Zhang, Hongyaoxing Gu, Sichao He, Shangyang Li and Si Wu) (ICLR 2024)

[8] An Information Theoretic Perspective for Heterogeneous Subgraph Federated Learning (Jiayan Guo*, Shangyang Li* and Yan Zhang) (DASFAA 2023,共同第一作者兼通讯作者,CCF-B)

[9] Graph Adversarial Contrastive Learning (Jiayan Guo*, Shangyang Li*, Yue Zhao and Yan Zhang) (DASFAA 2022,共同第一作者兼通讯作者,CCF-B)


神经医学大模型智能联合实验室