环宇翔

博士,研究员,研究组组长

Email: yxhuan@@gdiist.cn


个人简介:

环宇翔,研究员,类脑计算架构与超大规模处理系统研究组组长,类脑计算系统研究中心主任。曾于复旦大学取得微电子学与固体电子学博士学位,先后任复旦大学信息科学与工程学院任助理研究员、广东省智能科学与技术研究院副研究员、研究员。环宇翔博士长期围绕领域专用处理架构(Domain-Specific Architecture, DSA)的芯片系统设计和领域应用开展研究,重点聚焦于从芯片到系统的分布式互联处理架构和设计方法的研究,包括可重构可扩展架构的领域专用处理器、深度学习模型的高能效加速和分布式处理、神经拟态专用集成电路和超大规模类脑计算系统等。环宇翔博士在智能院工作期间,带领团队完成了超大规模类脑原型验证系统的研制、多尺度可扩展的类脑智能计算芯片研制。其主持和参与了多项国家级和省部级项目,已累计发表学术论文40余篇,申请发明专利20余项。


类脑计算架构与超大规模处理系统课题组:

本课题组主要面向类脑计算的硬件处理架构和超大规模类脑计算系统设计展开研究,旨在借鉴人脑的信息处理机制,设计具有神经拟态特性的专用处理内核、大规模的芯片互联架构与方法、以及面向全脑尺度千亿神经元规模超级计算系统。课题组将主要聚焦:面向类脑计算的领域专用处理架构与芯片设计,超低延时和高可靠的片上网络互联,面向晶圆级集成芯片的新型片上分布式处理架构和任务调度方法。目标通过“算法-架构-电路”协同设计的方法,实现事件驱动的超大规模芯片计算网络,支持海量处理内核的局部数据共享、异步信息传递和分布式协同处理,最终支撑千亿神经元规模的类脑计算系统的设计构建。

本课题组面向(智能计算芯片架构设计、智能算法编译优化方向、并行计算软硬件协同优化等方向)招聘博士后、工程师、实习生,感兴趣的同学,请邮件联系。


2025级澳门大学、澳门理工大学联合培养博士招生

本课题组拟招收2025级秋季入学联合培养博士生3名,拟培养方向为类脑计算方向,将根据课题组发展需求、学生兴趣与特长、学术前沿选定具体研究课题。申请人必须满足所在大学对博士课程的入学要求,在学期间享受所在大学的研究生身份,并在毕业后获得该校的博士学位。在广东省智能院开展研究期间,本课题组提供研究津贴、免费住宿、研究办公基础条件,具体以智能院及所在大学的相关规定为准。有意者请提前联系

 

院招生公告:https://www.gdiist.cn/zhaos/detail/80/121

报名截止日期:

2024年1220日 

依据经验面试名单会提前一天收集,靠近截止日期才交的申请会大受影响。

 

课题组要求:

1、具有计算机、软件工程、电子信息、人工智能、数学等相关理工科专业硕士或学士学位,学习成绩优秀;
2、具有良好的个人品德,乐于接受新事物,乐于交流,具有团队合作精神;
3、对课题组研究有兴趣,对科研有热情,有自驱力、做事有毅力;
4、有良好的Python/C++编程能力,有方向相关研究基础;
5、申请澳门大学要求985或前300高校本硕毕业;
6、具有相关顶会顶刊论文发表或高级别竞赛获奖者优先考虑;
7、在本课题组有实习经验者优先。

 

课题组优势:

1. 重视学生发展,关心学生成长;

2. 课题组长有丰富实践经验,了解学术界及业界需求,对相关领域有动手经验;

3. 关心学术界、业界前沿进展,与境内外优秀课题组有一定的交流学习机会;

4. 所处地点环境优美、舒适宜居,邻近穗深港澳,交通便利,便于交流。


代表论著:

[1] J. Xu, J.Fan, B. Nan, C. Ding, L. Zheng, Z. Zou, Y. Huan*, "ASLog: An Area-Efficient CNN Accelerator for Per-Channel Logarithmic Post-Training Quantization," in IEEE Transactions on Circuits and Systems I: Regular Papers, 2023. (SCI,通信作者)

[2] H. Jia#, Y. Huan#*; C. Ding, Y. Yan, J. Cui, J. Wang, C. Cai, L. Xu, Z. Zou*, L. Zheng*, "ASLog: An Area-Efficient CNN Accelerator for Per-Channel Logarithmic Post-Training Quantization," in IEEE Transactions on Industrial Informatics, 2022. (SCI,共同一作,共同通信作者)

[3] C. Ding#, Y. Huan#*, H. Jia, Y. Yan, F. Yang, L. Liu, M. Shen, Z. Zou and L.R. Zheng, "A Hybrid-Mode On-Chip Router for the Large-Scale FPGA-Based Neuromorphic Platform," in IEEE Transactions on Circuits and Systems I: Regular Papers, 2022. (SCI,共同一作,共同通信作者)

[4] B. Huang#, Y. Huan#*, H. Jia, C. Ding, Y. Yan, B. Huang, L.R. Zheng, and Z. Zou, "AIOC: An All-In-One-Card Hardware Design for Financial Market Trading System," in IEEE Transactions on Circuits and Systems II: Express Briefs, 2022. (SCI,共同一作,共同通信作者)

[5] Y. Jin, B. Huang, Y. Yan; Y. Huan*, J. Xu, S. Li, P. Gope, L. Xu, Z. Zou, and L.R. Zheng, "Edge-based Collaborative Training System for Artificial Intelligence-of-Things," in IEEE Transactions on Industrial Informatics, 2022. (SCI,共同通信作者

[6] B. Huang#, Y. Huan#*, H. Chu, J. Xu, L.R. Zheng, and Z. Zou, “IECA: An In-Execution Configuration CNN Accelerator With 30.55 GOPS/mm² Area Efficiency,” in IEEE Transactions on Circuits and Systems I: Regular Papers, 2021. (SCI,共同一作,通信作)

[7] J. Xu#, Y. Huan#, B. Huang, H. Chu, Y. Jin, L.R. Zheng, Z. Zou, “A Memory-Efficient CNN Accelerator Using Segmented Logarithmic Quantization and Multi-Cluster Architecture,” in IEEE Transactions on Circuits and Systems II: Express Briefs, 2020. (SCI,共同一作) 

[8] Y. Huan, N. Ma, J. Mao, S. Blixt, Z. Lu, Z. Zou and L. R. Zheng, “A 101.4 GOPS/W Reconfigurable and Scalable Control-Centric Embedded Processor for Domain-Specific Applications,” in IEEE Transactions on Circuits and Systems I: Regular Papers, 2016. (SCI)

[9] Y. Jin, J. Cai, J. Xu, Y. Huan*, Y. Yan, B. Huang, Y. Guo, L.R. Zheng, Z. Zou, “Self-aware distributed deep learning framework for heterogeneous IoT edge devices,” Future Generation Computer Systems, 2021. (SCI,通信作者)

[10] W. Li, H. Chu, B. Huang, Y. Huan*, L.R. Zheng, Z. Zou, “Enabling on-device classification of ECG with compressed learning for health IoT,” Microelectronics Journal, 2021. (SCI,通信作者)

[11] J. Xu#, Y. Huan#, B. Huang, H. Chu, Y. Jin, L.R. Zheng, Z. Zou, “Base-Reconfigurable Segmented Logarithmic Quantization and Hardware Design for Deep Neural Networks,” in Journal of Signal Processing Systems, 2020. (SCI,共同一作)

[12] Y. Huan, J. Xu, L. Zheng, H. Tenhunen and Z. Zou, “A 3D Tiled Low Power Accelerator for Convolutional Neural Network,” 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 2018. (EI)


环宇翔研究组