石云

博士,海外优青,研究员。

Email:shiyun@@gdiist.cn


个人简介:

2007年博士毕业于佐治亚州立大学生物学系生理专业。2008-2012年在加州大学旧金山分校药理系做博士后研究,师从Roger Nicoll院士。从2013年起相续任南京大学模式动物研究所教授和副所长,2022年任广东省智能科学和技术研究院研究员和研究组长。入选海外高层次优秀青年人才计划,江苏省双创人才计划和江苏省杰出青年。主要从事神经突触传递和可塑性机制研究。主持国家自然科学基金委基金5项,主持和参加科技部课题3项。研究成果发表在Nature, Neuron, Cell Reports, PNAS, Nature Communications, Mol Psychiatry, eLife等杂志。


认知神经网络与可塑性研究组:

本研究组围绕中枢兴奋性神经递质系统,研究突触传递和可塑性发生的基本机理。研究内容包括谷氨酸受体和辅助亚基的基本组成、空间结构、功能调控、合成和定位机制,从而理解兴奋性突触传递和可塑性发生的基本规律。课题组也以病人家系为着力点,建立动物模型研究突触紊乱和神经认知疾病的关系。

研究组另一个研究方向围绕TMEM63家族通道的神经生理功能。研究组以往的研究发现TMEM63家族编码了一类新型的机械和渗透压敏感的离子通道。今后的研究将围绕TMEM63家族通道的生理功能展开。


代表论著:

1. Yang G, Jia M, Li G, Zang YY, Chen YY, Wang YY, Zhan SY, Peng SX, Wan G, Li W, Yang JJ, Shi YS. (2024) TMEM63B Channel Is the Osmosensor Required for Thirst Drive of Interoceptive Neurons. Cell Discovery, 10(1):1

2. Shi T, Shen S, Shi Y, Wang Q, Zhang G, Lin J, Chen J, Bai F, Zhang L, Wang Y, Gong W, Shao X, Chen G, Yan W, Chen X, Ma Y, Zheng L, Qin J, Lu K, Liu N, Xu Y, Shi YS, Jiang Q, Guo B (2024) Osteocyte-derived sclerostin impairs cognitive function during ageing and Alzheimer's disease progression. Nature Metabolism, Online ahead of print.

3. Rinaldi B, Bayat A, Zachariassen LG, Sun JH, Ge YH, Zhao D, Bonde K, Madsen LH, Awad IAA, Bagiran D, Sbeih A, Shah SM, El-Sayed S, Lyngby SM, Pedersen MG, Stenum-Berg C, Walker LC, Krey I, Delahaye-Duriez A, Emrick LT, Sully K, Murali CN, Burrage LC, Plaud Gonzalez JA, Parnes M, Friedman J, Isidor B, Lefranc J, Redon S, Heron D, Mignot C, Keren B, Fradin M, Dubourg C, Mercier S, Besnard T, Cogne B, Deb W, Rivier C, Milani D, Bedeschi MF, Di Napoli C, Grilli F, Marchisio P, Koudijs S, Veenma D, Argilli E, Lynch SA, Au PYB, Ayala Valenzuela FE, Brown C, Masser-Frye D, Jones M, Patron Romero L, Li WL, Thorpe E, Hecher L, Johannsen J, Denecke J, McNiven V, Szuto A, Wakeling E, Cruz V, Sency V, Wang H, Piard J, Kortüm F, Herget T, Bierhals T, Condell A, Zeev BB, Kaur S, Christodoulou J, Piton A, Zweier C, Kraus C, Micalizzi A, Trivisano M, Specchio N, Lesca G, Møller RS, Tümer Z, Musgaard M, Gerard B, Lemke JR, Shi YS, Kristensen AS.(2023) Gain-of-function and loss-of-function variants in GRIA3 lead to distinct neurodevelopmental phenotypes. Brain, Online ahead of print.

4. Qin Y, Yu D, Wu D, Dong J, Li WT, Ye C, Cheung KC, Zhang Y, Xu Y, Wang Y, Shi YS, Dang S. (2023) Cryo-EM structure of TMEM63C suggests it functions as a monomer. Nature Communications, 14(1):7265.

5. Peng SX, Pei J, Rinaldi B, Chen Jiang, Ge YH, Jia M, Wang J, Delahaye-Duriez A, Sun J, Zang YY, Shi YY, Zhang N, Gao X, Milani D, Xu X, Sheng N, Gerard B, Chen Zhang C, Bayat A, Liu N, Yang JJ, Shi YS. (2022) Dysfunction of AMPA receptor GluA3 is associated with aggressive behavior in human. Mol Psychiatry, 27(10):4092-4102.

6. Li QQ, Chen J, Hu P, Jia M, Sun JH, Feng HY, Qiao FC, Zang YY, Shi YY, Chen G, Sheng N, Xu Y, Yang JJ, Xu Z, Shi YS. (2022) Enhancing GluN2A-type NMDA receptors impairs long-term synaptic plasticity and learning and memory. Mol Psychiatry, 27(8):3468-3478.

7. He L, Sun J, Gao Y, Li B, Wang Y, Dong Y, An W, Li H, Yang B, Ge Y, Zhang XC, Shi YS, Zhao Y. (2021) Kainate receptor modulation by Neto2. Nature, 599(7884):325-329.

8. Jiang CH, Wei M, Zhang C, Shi YS. (2021) The amino-terminal domain of GluA1 mediates LTP maintenance via interaction with neuroplastin-65. PNAS,118(9):e2019194118.

9. Du H, Ye C, Wu D, Zang YY, Zhang L, Chen C, He XY, Yang JJ, Hu P, Xu Z, Wan G, Shi SY. (2020) The cation channel TMEM63B is an osmosensor required for hearing. Cell Reports, 31:107596.

10. Duan GF, Xu S, Ye Y, Tao W, Nicoll RA,Shi YS, and Sheng N.(2018) Signal peptide represses GluK1 surface and synaptic trafficking through binding to amino-terminal domain. Nature Communications, 9(1):4879.

11. Sheng N, Bemben MA, Díaz-Alonso J, Tao W, Shi YS, Nicoll RA. (2018) LTP requires postsynaptic PDZ-domain interactions with glutamate receptor/auxiliary protein complexes. PNAS, 115(15):3948-3953.

12. Sheng N, Shi YS, Nicoll RA. (2017) The amino-terminal domains of kainate receptors determine the differential dependence on Neto auxiliary subunits for trafficking. PNAS, 114(5):1159-1164. 

13. Niu Y, Dai Z, Liu W, Zhang C, Yang Y, Guo Z, Li X, Xu C, Huang X, Wang Y, Shi YS, Liu JJ. (2017) Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory. eLife, 6. pii: e20991.

14. He XY, Li YJ, Kalyanaraman C, Qiu LL, Chen C, Xiao Q, Liu WX, Zhang W, Yang JJ, Chen G, Jacobson MP, Shi YS. (2016) GluA1 signal peptide determines the spatial assembly of heteromeric AMPA receptors. PNAS, 113(38):E5645-54.

15. Granger AJ, Shi Y, Lu W, Cerpas M, Nicoll RA. (2013) LTP requires an extrasynaptic pool of glutamate receptors independent of subunit type. Nature, 493(7433),495-500

16. Herring B, Shi Y, Suh YH, Zheng CY, Schmid SM, Roche KW, Nicoll RA. (2013) Cornichon proteins determine the subunit composition of synaptic AMPA receptors. Neuron, 77(6),1083-96

17. Gray JA, Shi Y, Usui H, During MJ, Sakimura K, Nicoll RA. (2011) Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: analysis of single-cell GluN2 subunit deletion in vivo. Neuron, 71(6), 1085-1101

18. Shi Y, Suh YH, Milstein AD, Isozaki K, Schmid SM, Roche KW, Nicoll RA. (2010) Functional comparison of the effects of TARPs and cornichons on AMPA receptor trafficking and gating. PNAS, 107(37), 16315-16319

19. Shi Y, Lu W, Milstein AD, Nicoll RA. (2009) The stoichiometry of AMPA receptors and TARPs varies by neuronal cell types. Neuron, 62(5), 633-40

20. Lu W, Shi Y, Jackson A, Bjorgan K, During MJ, Sprengel R, Seeburg PH, Nicoll RA. (2009) Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron, 62(2), 254-68




石云研究组